亚盘王

<address id="rbj1n"></address>
<address id="rbj1n"><dfn id="rbj1n"></dfn></address>
<sub id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></sub>

<address id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></address>

<sub id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></sub>

    <form id="rbj1n"></form>
    <thead id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></thead>

    <address id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></address><sub id="rbj1n"><listing id="rbj1n"><menuitem id="rbj1n"></menuitem></listing></sub><sub id="rbj1n"><dfn id="rbj1n"></dfn></sub>
    <form id="rbj1n"></form><sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub>
      <form id="rbj1n"><nobr id="rbj1n"></nobr></form>
        <address id="rbj1n"><listing id="rbj1n"><menuitem id="rbj1n"></menuitem></listing></address><address id="rbj1n"><listing id="rbj1n"></listing></address>
        <sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub><sub id="rbj1n"><listing id="rbj1n"></listing></sub>
        <sub id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></sub>

        <thead id="rbj1n"><var id="rbj1n"><output id="rbj1n"></output></var></thead>
        <sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub>
        <address id="rbj1n"></address>
          <sub id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></sub>
          <address id="rbj1n"><listing id="rbj1n"></listing></address>

          <sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub><form id="rbj1n"></form><sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub>

          <sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub>

          Events

          Position : Home > Events > Content

          The Insecurity of Machine Learning :Problems and Solutions

          Time: Oct 23, 2019

          地址 Office Building-210of South Campus 事件时间: 2019-10-23 14:20:00

          Title:

          The Insecurity of   Machine Learning : Problems and Solutions

          Lecturer:

          Adi   Shamir

          Time:

          2019-10-23 14:20:00

          Venue:

          Office Building-210of South Campus

          Lecturer      Profile

          Professor Adi   Shamir is a well-known expert in space coding, a professor at the Weizmann   Institute of Science in Israel, a member of the American Academy of Foreign   Sciences, and the founder of modern cryptography. 2002, with RL. Rivest and   L.M. Adleman jointly won the 37th Turing Award. Professor Adi Shamir has made   outstanding contributions in the field of cryptography: design with R.L.   Rivest and L.M. Adleman.The famous public key cryptosystem RSA: the idea of   identity-based null code system and threshold signature scheme was proposed   for the first time; the Merkle-hellman backpack cryptosystem was first   cracked and the RSA was the first time.

          In addition, he   analyzed a number of original tasks in the aspects of side channel political attacks,   multivariate public key rate system analysis and symmetric   cryptanalysis.Professor Shamirhas won the Israel Prize (Israel National   Award), Paris Kanellakis Theory and Practice Award, Erdos Prize, IEEE W.R.G.   BakerPrize, UAP Science Prize. PLUS XI Gold Medal, IEEE Koji Kobayashi   Computers and Communications Award.

          Lecture      Abstract

          The development of deep neural networks in the last decade   had revolutionized machine learning and led to maiorimprovements in the   precision with which we can perform many computational tasks. However, the   discovery five years ago ofadversarial examples in which tiny changes in the   input can fool well trained neural networks makes it difficult to trust such   resultswhen the input can be manipulated by an adversary. This problem has   many applications and implications in object recognition,autonomous driving,   cyber security, etc, but it is still far from being understood. In   particular, there had been no convincing

          explanations   why such adversarial examples exist, and which parameters determine the   number of input coordinates one has tochange in order to mislead the network.   In this talk I will describe a simple mathematical framework which enables us   to thinkabout this problem from a fresh perspective, turning the existence of   adversarial examples in deep neural networks from a bafflingphenomenon into   an unavoidable consequence of the geometry of Rn under the Hamming distance,   which can be quantitativelyanalyzed.

           

          Close

          <address id="rbj1n"></address>
          <address id="rbj1n"><dfn id="rbj1n"></dfn></address>
          <sub id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></sub>

          <address id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></address>

          <sub id="rbj1n"><dfn id="rbj1n"><ins id="rbj1n"></ins></dfn></sub>

            <form id="rbj1n"></form>
            <thead id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></thead>

            <address id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></address><sub id="rbj1n"><listing id="rbj1n"><menuitem id="rbj1n"></menuitem></listing></sub><sub id="rbj1n"><dfn id="rbj1n"></dfn></sub>
            <form id="rbj1n"></form><sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub>
              <form id="rbj1n"><nobr id="rbj1n"></nobr></form>
                <address id="rbj1n"><listing id="rbj1n"><menuitem id="rbj1n"></menuitem></listing></address><address id="rbj1n"><listing id="rbj1n"></listing></address>
                <sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub><sub id="rbj1n"><listing id="rbj1n"></listing></sub>
                <sub id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></sub>

                <thead id="rbj1n"><var id="rbj1n"><output id="rbj1n"></output></var></thead>
                <sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub>
                <address id="rbj1n"></address>
                  <sub id="rbj1n"><dfn id="rbj1n"><mark id="rbj1n"></mark></dfn></sub>
                  <address id="rbj1n"><listing id="rbj1n"></listing></address>

                  <sub id="rbj1n"><var id="rbj1n"><mark id="rbj1n"></mark></var></sub><form id="rbj1n"></form><sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub>

                  <sub id="rbj1n"><var id="rbj1n"><ins id="rbj1n"></ins></var></sub>

                  皇冠体育投注

                  360彩票网

                  天意|娱乐

                  百万彩票首页

                  贝斯特官方网站

                  90vs比分足球

                  点击进入优游

                  外围足彩网站

                  www博猫